ALL > Computer and Education > courses > university courses > undergraduate courses > Operating System > ZSTU class(2019-2020-1) > student directories > 2017329621011-蔡腾皓 >
homework-5 Version 0
👤 Author: by 781863542qqcom 2019-10-20 05:15:27 last modified by 781863542qqcom
The banker’s algorithm is a resource allocation and deadlock avoidance algorithm that tests for safety by simulating the allocation for predetermined maximum possible amounts of all resources, then makes an “s-state” check to test for possible activities, before deciding whether allocation should be allowed to continue.

Following Data structures are used to implement the Banker’s Algorithm:

Let ‘n’ be the number of processes in the system and ‘m’ be the number of resources types.

Available : 

  • It is a 1-d array of size ‘m’ indicating the number of available resources of each type.

  • Available[ j ] = k means there are ‘k’ instances of resource type Rj


Max :

  • It is a 2-d array of size ‘n*m’ that defines the maximum demand of each process in a system.

  • Max[ i, j ] = k means process Pi may request at most ‘k’ instances of resource type Rj.


Allocation :

  • It is a 2-d array of size ‘n*m’ that defines the number of resources of each type currently allocated to each process.

  • Allocation[ i, j ] = k means process Pi is currently allocated ‘k’ instances of resource type Rj


Need :



    •  It is a 2-d array of size ‘n*m’ that indicates the remaining resource need of each process.

    • Need [ i,   j ] = k means process Pi currently need ‘k’ instances of resource type Rj




for its execution.

  • Need [ i,   j ] = Max [ i,   j ] – Allocation [ i,   j ]


 

Allocationi specifies the resources currently allocated to process Pi and Needi specifies the additional resources that process Pi may still request to complete its task.

Banker’s algorithm consists of Safety algorithm and Resource request algorithm

For example, suppose at time T_0. The status of system is as following

Allocation         Max          Available

A     B     C       A   B   C      A     B     C

P_0    0      1      0       7    5   3      3      3      2

P_1     2      0     0       3    2   2

P_2    3      0      2       9    0   2

P_3    2      1       1       2    2   2

P_4    0      0      2       4    3   3

and the max-allocation matrix is as following:

Need

A     B     C

P_0    7      4      3

P_1     1      2      2

P_2     6      0      0

P_3     0      1      1

P_4     4      3      1

first, assign resources to p1, and the available is 5 3 2

then assign resources to p3, and the available is 7 4 3

later assign resources to p4, and the available is 7 4 5

then assign resources to p2, and the available is 10 4 7

at last assign resources to p1 and the available is 12 5 8

Please login to reply. Login

Reversion History

Loading...
No reversions found.