Definitions
Computer science defines AI research as the study of "intelligent agents": any device that perceives its environment and takes actions that maximize its chance of successfully achieving its goals. A more elaborate definition characterizes AI as âa systemâs ability to correctly interpret external data, to learn from such data, and to use those learnings to achieve specific goals and tasks through flexible adaptation.
Applications
AI is relevant to any intellectual task. Modern artificial intelligence techniques are pervasive and are too numerous to list here. Frequently, when a technique reaches mainstream use, it is no longer considered artificial intelligence; this phenomenon is described as the AI effect. High-profile examples of AI include autonomous vehicles (such as drones and self-driving cars), medical diagnosis, creating art (such as poetry), proving mathematical theorems, playing games (such as Chess or Go), search engines (such as Google search), online assistants (such as Siri), image recognition in photographs, spam filtering, predicting flight delays, prediction of judicial decisions, targeting online advertisements and energy storage .With social media sites overtaking TV as a source for news for young people and news organizations increasingly reliant on social media platforms for generating distribution, major publishers now use artificial intelligence (AI) technology to post stories more effectively and generate higher volumes of traffic
Basics
A typical AI analyzes its environment and takes actions that maximize its chance of success  An AI's intended utility function (or goal) can be simple ("1 if the AI wins a game of Go, 0 otherwise") or complex ("Do mathematically similar actions to the ones succeeded in the past"). Goals can be explicitly defined, or induced. If the AI is programmed for "reinforcement learning", goals can be implicitly induced by rewarding some types of behavior or punishing others. Alternatively, an evolutionary system can induce goals by using a "fitness function" to mutate and preferentially replicate high-scoring AI systems, similarly to how animals evolved to innately desire certain goals such as finding food.Some AI systems, such as nearest-neighbor, instead of reason by analogy, these systems are not generally given goals, except to the degree that goals are implicit in their training data. Such systems can still be benchmarked if the non-goal system is framed as a system whose "goal" is to successfully accomplish its narrow classification task.
AI often revolves around the use of algorithms. An algorithm is a set of unambiguous instructions that a mechanical computer can execute. A complex algorithm is often built on top of other, simpler, algorithms. A simple example of an algorithm is the following (optimal for first player) recipe for play at tic-tac-toe.
- If someone has a "threat" (that is, two in a row), take the remaining square. Otherwise,
- if a move "forks" to create two threats at once, play that move. Otherwise,
- take the center square if it is free. Otherwise,
- if your opponent has played in a corner, take the opposite corner. Otherwise,
- take an empty corner if one exists. Otherwise,
- take any empty square.